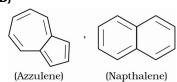
Level - 1 DTS-5

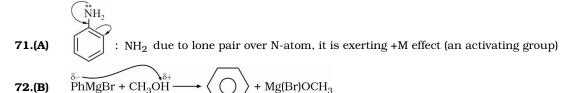
61.(BCD) NaNH $_2$ will remove acidic-H

62.(A)
$$C_2H_4O = CH_3CHO \quad X : CH_3CH = C CH_3 CH_2CH_3 ; CH_3CH = C(CH_3)CH_2CH_3$$


63.(B)
$$O_3$$
 fails to break $\stackrel{|}{C}$ $\stackrel{|}{-}$ $\stackrel{|}{C}$ $-$ bond.

So the product of reductive ozonolysis : Ph – C = CH $\xrightarrow{O_3}$ Ph – C – CHO $\stackrel{||}{\underset{O}{\text{II}}}$

64.(C)
$$2H_2C$$
 CHO
 CHO


- **65.(A)** Does not satisfy all conditions of aromaticity i.e. planarity, $(4n + 2)\pi$ electrons and complete conjugation.
- **66.(B)** Benzene actually has 6 carbon-carbon 'Partial double' bonds due to resonance.
- 67.(AB) Satisfies all conditions of aromaticity. Cyclic, Perfectly conjugated Planar, $(4n + 2)\pi$ -electrons.
- **68.(B)** Huckel's Rule: An aromatic compound must contain $(4n + 2)\pi$ delocalized-electrons.
- **69.(A)** Conjugated system = Resonance = More stable

70.(ABCD)

All are true statements regarding naphthalene

⇒ Non-benzenoid in nature

74.(B)
$$(O)$$
 (O) (O)

Vidyamandir Classes

75.(c)
$$C_2H_5$$
 COOH $COOH$

* Alkyl group over benzene ring (except 3) is oxidised to -COOH group.